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Radiation Reaction in a Continuous Focusing Channel
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We show that the radiation damping rate of the transverse action of a particle in a straight,
continuous focusing system is independent of the particle energy, and that no quantum excitation is
induced. This absolute damping effect leads to the existence of a transverse ground state to which
the particle inevitably decays and yields the minimum beam emittance that one can ever attain,
gemin ­ h̄y2mc, limited only by the uncertainty principle. Because of adiabatic invariance, the particle
can be accelerated along the focusing channel in its ground state without any radiation energy loss.

PACS numbers: 41.60.–m, 29.27.Eg, 41.75.Ht, 61.60.Mk
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In an electron or positron storage ring the amplitud
of transverse oscillations damps towards a stable clos
trajectory. This damping is caused by the emission o
synchrotron radiation due to the uniform bending field
and by the replacement of the energy in the longitud
nal direction only. The damping time is approximately
equal to the time it takes to radiate away the initial en
ergy of the particle. This damping is counteracted b
random fluctuations generated by the discrete photo
emitted by each electron, which leads to an equilibrium
beam emittance when the damping and excitation rat
cancel [1,2].

Radiation damping and excitation are, in principle
present in a straight magnetic or electric focusing syste
because particles with finite amplitude are bent bac
towards the straight line trajectory. However, thes
effects may be modified because the fields are n
uniform in such a focusing system. Motivated by thes
considerations and also by proposals for acceleratin
charged particles in crystals [3,4], in this paper w
study the radiation reaction effect on a charged partic
undulating in a straight, continuous focusing system.

Consider an electrostatic focusing channel that provid
a transverse continuous potentialV sxd ­ Kx2y2 for a
charged particle, say, a positron, whereK is the focusing
strength. The parabolic potential could be, for exampl
an approximation of the Lindhard potential in the cas
of planar crystal channeling [5,6]. For simplicity, we
take x as the single transverse dimension of the particl
which has relativistic energyE ­ gm and which moves
freely (without acceleration) in the longitudinalz direction
with a constant momentumpz ­ gmbz in the absence
of radiation. We sete ­ h̄ ­ c ­ 1 in most equations,
but reinsert them when suitable. The effect of th
additional transverse dimension will be discussed late
We consider the case in which the peak transver
momentum in one oscillationpx,max ø pz . Defining
Ez ­

p
m2 1 p2

z , we can approximate the total energy
E ­

p
m2 1 p2

z 1 p2
x 1 V sxd, as Ez 1 Ex , where Ex ­

p2
x y2Ez 1 Vsxd is the so-called transverse energy. Th

motion of the particle is now decoupled into two parts
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a free relativistic longitudinal motion and a transvers
harmonic oscillation with an effective massEz.

We now move straight to quantum mechanical analys
of the system because we want to calculate the fu
radiation reaction including damping and excitation du
to discrete photon emissions. Work on relativistic cryst
channeling has shown that the spin degree of freedo
plays a negligible role [7]. Therefore we use the Klein
Gordon equation to describe the general wave functi
Csx, z, td of the channeled particle,

fs2i=== 2 Ad2 1 m2gC ­ si≠t 2 V d2C . (1)

In the absence of radiation, we letA ­ 0 and look for
the energy levelsE and the stationary statesCsx, z, td ­
e2iEtjn, pzl of Eq. (1) by neglecting terms of the orde
sExyEd2 [8]. We find

E . Ez 1 Ex ­
q

m2 1 p2
z 1 vzsn 1 1y2d , (2)

jn, pzl ­ sCnyLd1y2sEzvzd1y4eipzze2Ez vzx2y2Hn

≥p
Ezvz x

¥
,

(3)

where Cn ­ s2nn!
p

p d21, L is the length of the
channel, Ez ­

p
m2 1 p2

z as before, vz ­
p

KyEz is
the transverse oscillation frequency,n is the transverse
quantum numbersn ­ 0, 1, 2, . . .d, andHn is thenth-order
Hermite polynomial. It is clear that the transverse energ
level Ex ­ sn 1

1
2 dvz and the transverse state function

are controlled by bothn andpz .
Coupling between the channeled particle and the rad

tion field, represented by the vector potentialA in Eq. (1),
leads to spontaneous emission of photons. By choos
Coulomb gauge,=== ? A ­ 0, and ignoring theA2 term
(double-photon emission), we arrive at

f2=2 1 m2 1 i2A ? ===gCsx, z, td ­ si≠t 2 V d2Csx, z, td .

(4)

Moving to the interaction representation we write
Csx, z, td ­ exps2iH0tdcsx, z, td. Identifying sH0 2

V d2 ­ s2=2 1 m2d, and neglecting̈cstd in the expansion
of si≠t 2 V d2Cstd in Eq. (4), we obtain

Ùcstd ­ eiH0tfsH0 2 V d21A ? ===ge2iH0tcstd . (5)
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Using first-order, time-dependent perturbation theo
(Fermi’s golden rule), we obtain the transition rateWfi

for the particle from an initial statejn, pzl (with energyE)
to a final statejn0p0

zl ( with energyE0):

Wfi ­ 2pjMfi j
2dsE 2 E0 2 vgd , (6)

where the matrix elementMfi is defined by

jMfij
2 ­ uuukn0, p0

z ; kg jsH0 2 V d21A ? ===jn, pz ; 0luuu2 . (7)

The vector potentialA acting on the radiation field
creates a photon of momentumkg and energyvg svg ­
jkg jd with two possible polarizationŝe1 and ê2 (ê1 ? ê2 ­
0 and ê1,2 ? kg ­ 0). The operatorsH0 2 V d21 can be
approximated asH 21

0 by neglecting terms of the order
sExyEd. Therefore

jMfij
2 .

2p

E0 2vg

2X
j­1

uuukn0, p0
z je

2ikg ?xsêj ? ===djn, pz luuu2 . (8)

The integral overz in the above equation gives rise
to dspz 2 p0

z 2 kgzd, which expresses the conservatio
of longitudinal momentum. Together with the conserva
tion of energy, this places a tight constraint on the radi
tion reaction of the particle. In order to conserve long
tudinal momentum, we havep0

z ­ pz 2 vg cosu, where
u is the photon emission angle relative to the focusin
axis. For the photon energyvg ø E, the longitudinal
energyEz ­

p
m2 1 p2

z must accordingly decrease by an
amountDEz . spzyEzdDpz ­ vgb cosu. Since the total
energy of the particle is reduced by an amountvg , its
transverse energyEx ­ E 2 Ez must decrease byDEx ­
vgs1 2 b cosud . 0. It follows that sn 1

1
2 dvz 2 sn0 1

1
2 dv0

z ­ vgs1 2 b cosud . 0. For a small change inEz,
v0

z ­
p

KysEz 2 DEzd . vzs1 1 DEzy2Ezd. Substitut-
ing vgb cosu for DEz, we obtain an equation that relate
the change of the transverse quantum number to the p
ton energy and its emission angle,

sn 2 n0dvz ­ s1 2 b cosudvg

1 svgb cosudExy2Ez . 0 , (9)

which is always positive definite. We therefore conclud
that both the transverse energy and the transverse quan
number always decrease after a photon emission proc
for all possible photon angles.

Introducing the harmonic numbern ­ n 2 n0 and the
pitch angle of the particleup ­ px,maxypz .

p
2ExyEz, we

find from Eq. (9) a condition for the photon energy

vg .
nvz

1 2 b cosu 1 u2
py4

.
2g2nvz

1 1 g2u2 1 g2u2
py2

.

(10)

Note thatgup in the above equation plays the same ro
as the undulator strength parameter in undulator rad
tion [9].

The exact form of the transition rateWfi given by
the integral overx in Eq. (8) is more complex than
usual because the initial and the final transverse sta
have different effective masses. This issue is handl
1760
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by expanding the final transverse wave function as
superposition of the initial ones. One can then expre
Wfi in terms of associated Legendre polynomials an
Laguerre functions [10,11]. However, in the “undulator
regime wheregup ø 1, the effective mass difference can
be ignored forvg ø E, and Eq. (8) can be evaluated
by the dipole approximation [7] where terms beyond th
linear order inx are neglected. Thus the transition rate
nonzero only ifn0 ­ n 2 1 (the dipole selection rule) and
is simply given by

Wfi ­
2p2nvz

Ezvg

"
cos2fscosu 2 bd2

s1 2 b cosud2
1 sin2f

#
3 dfs1 2 b cosudvg 2 vzg . (11)

Therefore in this regime the rate of change of th
particle’s total energy due to dipole radiation is

dE
dt

­
X
f

Z d3kg

s2pd3
sE0 2 EdWfi ­ 2

2
3

reK
mc

g2nh̄vz ,

(12)

wherere ­ e2ymc2 is the classical electron radius. After
identifying nh̄vz with the rms amplitude of the oscillating
particle in the large-n limit snh̄vz . Ex ­ Kkx2ld, we see
that dEydt in the above expression is identical to th
classical radiation power, which is proportional toE2F2

'

(F' being the transverse focusing field strength).
We have shown from Eq. (9) that the transvers

quantum leveln always decreases after a random photo
emission. This conclusion is valid for all oscillation
amplitudes, although we focus on the undulator regim
where gup ø 1 to illustrate the unique feature of radi-
ation reaction in a focusing channel. With the dipol
transition rate given by Eq. (11), we can calculate the ra
of change of the transverse quantum level

dn
dt

­
X

f

Z d3kg

s2pd3
sn0 2 ndWfi ­ 2

2
3

reK
mc

n . (13)

We see thatn damps exponentially with an energy-
independent damping constantGc ­ 2reKy3mc. Note
that in the case of radiation in a bending magnet, the
is an additional term of opposite sign independent of th
quantum level in question that represents the excitation
transverse oscillations [2]. That term is absent in Eq. (1
and the radiation damping is absolute because no quant
excitation is induced by random photon emissions. Sin
the action of the transverse oscillation isJn ­ Exyvz ­
s1 1 1y2dh̄, the decrement of the transverse energy lev
n leads to the radiation damping of this action given b
dJnydt ­ 2GcsJn 2 h̄y2d.

One can use classical radiation reaction to obtain
similar result for the radiation damping of the transvers
oscillation amplitude [12]. However, our treatment show
that it is the action that damps exponentially (the chan
of energy modifies the amplitude damping). It also clear
shows how to extend the results to the case wheregup *

1. More importantly, the quantum mechanical calculatio
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above automatically takes into account the full radiatio
reaction and shows the absence of excitation in th
system (a surprising result viewed from the standpoint
electron synchrotrons and storage rings). It is difficult
not impossible to model the radiation effect of discret
photon emissionsclassically for gup ø 1, because the
time during which a typical photon is emitted is much
longer than the oscillation period in the undulator re
gime [2].

The excitation-free reaction of radiation comes from th
fact that the transverse quantum level mustdecreaseaf-
ter each radiation process. In the longitudinal directio
the particle recoils against the emitted photon in ord
to conserve the longitudinal momentum between the tw
particles. However, in the transverse direction the e
istence of the focusing force destroys the momentu
balance and suppresses the recoil effect. The exter
focusing environment absorbs the excess transverse m
mentum during the process of radiation. In this sense, t
radiation reaction of a channeled particle in the transver
dimension is similar to that in the Mössbauer effect [13]

Because of the lack of recoil and excitation in th
transverse dimension, the particle damps exponentially
its transverse ground state (n ­ 0), and this ground state
is stable against further radiation (energy and momentu
conservation forbid further radiation). In the ground sta
the particle reaches the minimum value of the actio
J0 ­ h̄y2. Relating this minimum action to a normalized
emittance, we find

gemin ; J0ymc ­ l-cy2 , (14)

where l-c ­ h̄ymc is the Compton wavelength. This
minimum is also the fundamental emittance limited by th
uncertainty principle.

One can estimate the time needed for a particle
damp to its ground state. Suppose the particle ent
the focusing channel with a transverse energysni 1
1
2 dvz satisfying the undulator condition, it reaches th
ground state in a timetg , lnsnidyGc. To illustrate the
range of damping times, let us consider two extrem
examples: crystal channels and conventional focusi
devices for accelerators. The channeling strength for
typical crystal channel isK , 1011 GeVym2, so Gc ,
s10 nsecd21. When a 100 MeV particle is initially barely
captured by the crystal channel, the transverse energy
the particle is of the order of the maximum channelin
potential energy 100 eV, and the corresponding quantu
number ni is about 500. Thus in the absence of an
dechanneling effects such as multiple scattering [14], t
time it takes to damp to the ground state istg , 60 nsec.
For a conventional linear focusing device, the focusin
strength is aboutK , 30 GeVym2, so Gc , s30 secd21.
The damping time to the ground state in this case depen
upon the logarithm of the initial stateni , but will usually
be severale-folding times.

Another novel characteristic of this radiation reactio
is that the relative damping rate of the transverse acti
n
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can be much faster than the relative damping rate
longitudinal momentum, i.e., the radiation reaction
asymmetric in these two dimensions. The rate of chan
of the longitudinal momentum can be obtained from th
energy loss equation, Eq. (12), with the approximatio
pz . Ez . E. We obtainÇ

1
pz

dpz

dt

Ç
.

1
E

Ç
dE
dt

Ç
.

Gc

2
g2u2

p , (15)

which is less thanGc for g2u2
p , 2. In the undulator

regime we have the conditiongup ø 1, thusÇ
1
Jn

dJn

dt

Ç
. Gc ¿

Ç
1

pz

dpz

dt

Ç
. (16)

One major consequence of the above inequality
that a particle may lose only a negligible amount
total energy when it is damped to the transverse grou
state. By replacingn ­ ni exps2Gctd andvz .

p
Kc2yE

in Eq. (12) and integrating over time, we find the fina
energy retained in the ground statenf ­ 0 is

Ef ­ Eiyf1 1 sgupd2
i y4g2. (17)

Note that Eq. (17) is derived in the undulator regim
where gup ø 1. Thus particles that enter the focusin
channel with the same initial energy but different initia
pitch angles will all end up in the transverse ground sta
with a very small relative longitudinal energy spread
sgupd2

i y2.
We have shown that the radiation reaction in a straig

continuous focusing channel is fundamentally differe
from that in a bending magnet. In a uniform magnet
field, the radiating particle recoils against the emitte
photon by both reducing its orbital quantum number a
by shifting the center of its circular orbit [2]. This latte
change is allowed due to the translational invariance of
system in the plane perpendicular to the magnetic fie
i.e., the system is degenerate with regard to the orbit
centers. The center shift is even necessary in order t
the tangent of the particle trajectory be continuous befo
and after the emission. Therefore the photon emiss
yields a random recoil of the electron due to variatio
in both angle and magnitude of the photon’s momentu
The resulting random shifts in the orbit center give rise
the random excitations of radial betatron oscillations.

On the other hand, the existence of a focusing a
in a straight, continuous focusing environment remov
such a degeneracy and therefore eliminates any quan
excitation to the particle from random photon emission
In a conventional storage ring, the stored particles a
confined by both bending and focusing fields. Howeve
the focusing field is typically so much weaker tha
the bending field that its radiation effect is negligible
On the average, radiation damping in a convention
storage ring shrinks the momentum vector of the partic
proportionally [1,15].

Nevertheless, the above results of straight, focus
channels can be extended to “quasistraight” syste
1761
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provided that the focusing field is much stronger tha
the bending field. The radiation formation length du
to bending is of the orderryg [1,2 ], where r is
the bending radius. When this length is much long
than the betatron wavelength, the transverse damping d
to the local oscillations is much faster than that caus
by the global bending of the trajectory. In this case th
radiation reaction is dominated by the focusing field [11

We note that all the results obtained here are n
affected by adiabatic acceleration along the longitudin
direction, since both the action and the stationary sta
in our system are adiabatic invariants. The condition f
adiabatic acceleration is given by

dEaccel

dt
ø vzE .

p
KE . (18)

Using the previous examples, we getvzE , 105 GeVym
for a crystal channel and 2 GeVym for a conventional
focusing device when the energy of the particle is on
100 MeV. Obviously, the above inequality is guarantee
by any foreseeable acceleration mechanism. We conclu
that the particle, once damped to its transverse grou
state in a continuous focusing channel, can be accel
ated adiabatically along the channel without any furth
radiation loss. Therefore the theoretical minimum tran
verse emittance can be retained at a much higher acce
ated particle energy, and the relative longitudinal ener
spread can be reduced through acceleration.

We have left out the other transverse degree of freedo
of the particle for the sake of simplicity. If they direction
is free of any force, the particle radiating a photon with
momentum component in they direction must recoil by
the same magnitude to conserve total momentum in th
direction. In general, quantum excitations are present in
force-free dimension. However, if a continuous focusin
force also exists in they direction, and if both transverse
oscillations satisfy the conditionsgux

p ø 1 andguy
p ø 1,

then it is straightforward to extend the discussion abo
to both transverse dimensions because radiation react
effects in thex andy directions are completely decoupled
Photons are emitted by changing eithernx or ny by one,
and all the previous results apply to both dimensions.
the case where the oscillation amplitude is large in th
x or y direction, there is some coupling between th
two transverse degrees of freedom. But if we defin
the total transverse energyE' ­ p2

x y2Ez 1 K1x2y2 1

p2
y y2Ez 1 K2y2y2, from the conservation of both energy

and longitudinal momentum, it follows thatE' always
decreases after a random photon emission. Combin
this with the existence of a focusing axis in the continuou
focusing system, we conclude that the particle must dam
to a mutual transverse ground state (nx ­ 0 and ny ­ 0)
that is stable against further radiation.

The basic results obtained here apply to any straight
quasistraight, continuous focusing system. The excitatio
free, asymmetric radiation reaction in such systems
the direct consequence of the kinematic requirements a
1762
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does not depend on the various approximations used he
There may be interesting applications of this phenomen
in beam handling, cooling, and acceleration. For examp
in a sufficiently low-energy, focusing-dominated electro
ring, the absolute transverse damping could perhaps be
lized to obtain ultracool beams in transverse phase spa
with negligible total energy loss. Proposals of miniatur
linacs powered by lasers [16] would require very stron
mesoscopic focusing systems. The results of this Let
provide a radiation damping mechanism to prevent em
tance growth. The existence of a transverse ground st
for the accelerated particles might also be quite releva
and important. However, when realistic systems are co
sidered, some of the results shown here may be mo
fied. For instance, if other sources of excitation (multipl
Coulomb scattering, imperfections, etc.) are present, th
the beam may not reach the minimum emittance. Wh
these additional effects are included, the actual equilibriu
beam emittance will depend upon the details of the app
cation considered.
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